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Does financial intermediation directly cause growth, or is financial inter-

mediation merely a necessary adjunct to growth? In this paper I iden-

tify a channel by which a nation's financial structure may directly affect

its development experience. I augment a standard capital-accumulation

model with a general contracting space. Armed with these extra con-

tractual possibilities, financial intermediaries will endogenously arrange

poorer agents into asset-pooling groups, which mimic one type of rosca

(rotating savings and credit association) commonly observed in the devel-

oping world. Roscas help agents overcome credit rationing, increasing the

demand for capital. The market-clearing interest rate increases, as does

the average effort level. Output increases, but at the cost of increased in-

equality. Economies with the extra contracts grow faster to an invariant

distribution of wealth with both a higher mean and greater inequality than

economies without them.

The fact that financial intermediation, particularly asset-pooling contracts

like roscas, contributes to inequality may be counter-intuitive. In my mod-

el there are two main reasons for this effect. First, asset-pooling groups

cause the market-clearing interest rate to increase, thus increasing the pre-

mium to wealth. When the interest rate is higher, differences in wealth

result in larger differences in consumption. Second, asset-pooling groups

allow poor agents to leave their low-return, but safe, option for a high-

return, but risky, option. Because the market-clearing interest rate falls as

wealth increases, these factors combine to produce Kuznets-style dynam-

ics in the distribution of wealth, in which inequality is initially increasing

and then decreasing. Note that the effect of wealth inequality depends
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crucially on the financial market structure. Without the asset-pooling con-

tracts, inequality may reduce output. With them, I provide sufficient con-

ditions for wealth inequality to have no effect on output at all.

The asset-pooling contracts that emerge endogenously may be interpreted

as one-period roscas. Financial intermediaries will pool the wealth of

many agents of the same wealth, assign the pool to a certain fraction of

the contributors and then make them further loans (if needed). Because in

this paper all agents of a given wealth will be identical and live for only

one period, the pooled assets are divided with a lottery. Such contracts

are known as lot roscas and are observed in the developing world, see for

example the reviews of Besley, Coate and Loury (1993, 1994). Further, in a

study of Mexican financial institutions, Mansell-Carstens (1993) finds that

lot roscas are used by, among others, Volkswagon de Mexico's consumer-

finance arm.

The extra contractual possibilities may also be interpreted as a joint stock

company. All agents (of the same wealth) trade their wealth for one share

in an enterprise jointly owned by them all. With the total equity from these

shares, the enterprise either directly purchases capital inputs or approach-

es a bank for further debt financing of even more capital inputs. A certain

proportion of the investors, chosen by lottery, are designated as managers.

The enterprise allocates the accumulated capital to the managers for use in

their projects. Agents, in my model, may only work on their own projects,

and their labor effort is privately observed only by them. As a result,

the correct level of labor effort is induced with an incentive-compatible
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“managerial compensation contract” that rewards those managers whose

projects succeed and punishes those whose projects fail. The remaining

shareholders, who were not selected as managers, become residual claim-

ants and divide equally the output remaining after the managers are com-

pensated and the bank repaid. From the point of view of an individual

agent, an equity share in the enterprise represents a lottery ticket with a

known probability of success. From the point of view of the enterprise as

a whole, the probability that any one shareholder is designated a manager

is the proportion whose projects may be funded.

Returning to the interpretation of input lotteries as roscas, Besley, Coate

and Loury (1993, 1994) further find that roscas in general are Pareto-dom-

inated by credit markets. In contrast, I provide sufficient conditions for

allocations with asset-pooling contracts to be Pareto-optimal. This differ-

ence stems from the fact that in this paper, roscas emerge as an endoge-

nous response to credit rationing, and are part of a larger credit system.

The winners of the asset-pooling lottery may go on to get loans from fi-

nancial intermediaries to augment their pooled assets.1

The model in this paper builds upon the work of Bannerjee and Newman

(1993), Piketty (1997) and especially Aghion and Bolton (1997). These pa-

pers study the effect of, and the evolution of, the distribution of wealth in

development. In this paper, I provide sufficient conditions for the distri-

1It is also worth noting that Besley, Coate and Loury consider multi-period roscas, in

which agents must be prevented from defecting. In this paper, roscas last for one period

only, as if agents could not be prevented from defecting.
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bution of wealth to converge to a unique invariant distribution, no matter

what the initial distribution. Thus with the richer contract space there are

no “poverty traps.” Furthermore, with the extra contracts, I provide suffi-

cient conditions for the distribution of wealth to have no effect on equilib-

rium prices or aggregate output. This difference stems from the fact that

credit rationing provides the main mechanism, in those papers, by which

distributions of wealth affect macroeconomic variables such as prices and

output. In this paper, lottery based asset pooling contracts provide a mech-

anism to overcome credit rationing.

The analysis proceeds as follows: I define a contract space based on the

work of Prescott and Townsend (1984a, b), in which contracts are seen as

lotteries over possible outcomes. I then show how this abstract lottery

space can be interpreted as a sequence of familiar contracts, and I solve

analytically a model based on the work of Aghion and Bolton (1997). I then

solve a set of richer models numerically, using a variant of the techniques

of Phelan and Townsend (1991).

Section 1 below defines the notation, contract space and structure of the

model. Section 2 specifies the equilibrium concept and some prelimi-

nary results about asset pooling. Section 3 presents analytic results from a

model with risk neutrality and lumpy capital (fixed project size). I show

that, in poor economies, asset-pooling lotteries increase output and the

market-clearing interest rate; further, I provide sufficient conditions for

optimality and a convergence result. Section 4 presents numerical results

for a model with a richer technology and risk aversion. Section 5 concludes
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this paper.

1 The Model

In this section I describe the preferences, technology and endowments of

agents in the model, the nature of the contracts which intermediaries offer

to agents and how goods are stored from one period to the next. Here

and for the rest of this paper, objects which are normally considered to be

continuous (for example, consumption), are constrained to live in finite

sets [following Prescott and Townsend (1984a, b)]. This provides simpler

notation and analysis, and one can imagine allowing the number of points

to grow arbitrarily large [see Phelan and Townsend (1991)].

1.1 Preferences, Technology and Endowments

Each agent lives for one period and produces exactly a single successor

agent at the end of the period, towards which it is altruistic in a very

special way: agents get utility directly from the amount bequested, not

the utility value of bequests to the next generation. (This is often called

“warm-glow” altruism.) Agents get a lump of consumption � at the end

of the period, where � lies in the set T = f�1; : : : ; �nT g, and �1 = 0, so that

there is limited liability in the sense of Sappington (1983). Agents split

this lump between own-consumption and bequests to their successor gen-
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eration. One can model this choice directly, but here I just assume that

agents bequeath a constant fraction s of their consumption lump � , and

have indirect utility over � given by u(� ), where u0 > 0, u00 � 0. While �

is public (that is, observed costlessly by all agents), the division between

own-consumption and bequests is private (that is, observed only by the

agent).

Agents also exert private labor effort, z in Z = fz1; : : : ; znZg, where z1 = 0.

Private labor effort may be exerted on the agent's own technology only.

Effort produces disutility of �(z), where �0 > 0 and �00 � 0.

Agents then have preferences over consumption transfers � inT and effort

inputs z in Z of:

U�z = u(� )� �(z):

All agents have access to a back-yard technology which maps inputs of

private labor effort z and public productive capital k into a probability dis-

tribution over outputs q. Capital k has to lie in the set K = fk1; : : : ; knKg

(where k1 = 0), and output q has to lie in the set Q = fq1; : : : ; qnQg. Both

capital and output are public, and output may be costlessly confiscated

(for example, by an intermediary). Inputs are timed so that capital is

added first, before the agent decides on labor effort. Thus given inputs

of effort z and capital k, the technology, P (qjz; k), specifies the probabil-

ity of realizing a particular output q. In addition, for each possible input
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combination z; k in Z�K, the technology must satisfy:

P (qjz; k) � 0; and
X
q

P (qjz; k) = 1:

Capital is consumed entirely in the productive process. In the numerical

section, the technology will have to satisfy the stricter conditionP (qjz; k) >

0 all q; z; k inQ� Z�K. This will prevent infinite likelihood ratios.

There is a continuum of agents of unit mass, a proportion  a of whom are

endowed at the beginning of the period with one of nA levels of wealth a

in A = fa1; : : : ; anAg, where for each a,  a � 0 and
P

a  
a = 1. Wealth is

in the form of capital, is public and may be costlessly transported among

agents. Define  to be the vector of population weights, [ a1 ; : : : ;  anA ].

1.2 Contracts

The contract space studied by Prescott and Townsend (1984a, b) uses lot-

teries to span non-convexities arising from moral-hazard constraints. For

this reason, it is very useful in this paper. Contracts are specified as weights

on the linear space of all of the possible combinations of consumption

transfers, output, effort and capital, conditional on wealth. From the point

of view of the economy as a whole, because there is a continuum of agents,

the contract weights are fractions of agents who will receive a particular

combination of consumption, output, effort and capital. From the point of

view of a particular agent, they are the probability of receiving a particu-

lar combination. In section 3 below, I show how contracts in this abstract
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space may be interpreted in more familiar terms.

The space of valid contracts will be a linear space subject to some linear

constraints. The constraints are, first, that the contracts form a valid set of

probabilities; second, that they are Bayes compatible with the underlying

technology; and third, that they are incentive compatible with respect to

deviations in effort once capital has been announced. Let the linear space

L be the Euclidean space of dimension nTnQnZnK . A contract x(�; q; z; k)

must lie in the spaceX, where:

X =
�
x 2 L; such that:

x(�; q; z; k) � 0; all �; q; z; k;
X
�qzk

x(�; q; z; k) = 1;(C1)

X
�

x(�; q; z; k) = P (qjz; k)
X
�q

x(�; q; z; k) all (q,z,k) inQ� Z�K;(C2)

X
�q

x(�; q; z; k)
�
P (qjẑ; k)
P (qjz; k)

U
� ẑ � U�z

�
� 0 all z; ẑ; k in Z� Z�K

)
:(C3)

Because contracts can be viewed as joint lotteries over every possible com-

bination of transfers T, output Q, effort Z and capital K, the constraints

(C1) to (C3) can be thought of as restrictions on those lotteries. In par-

ticular, equation (C1) requires that contracts form valid lotteries, that is,

that they sum to unity and are non-negative. Equation (C2) requires that

the contracts respect the underlying probabilities given by the technology,

P (qjz; k). Finally, equation (C3) is the incentive-compatibility constraint; it

requires that, for every assigned effort level z, the agent not prefer some

alternative effort, ẑ. For more on this constraint, see the appendix.
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Notice that the contract space X does not depend on the wealth a of an

agents. In the next section I introduce financial intermediaries who will

offer the best possible contract in X to agents, subject to a zero-profit con-

dition. This zero-profit condition will depend on agents' wealth.

Finally, it is convenient to assume that A = sT, so that if an agent is as-

signed the j-th element ofT, �j , he bequeaths s�j , which is (by assumption)

exactly equal to aj , the j-th element of A.

2 Equilibrium and Pooling Contracts

In this section I present the structure of financial intermediation, the equi-

librium concept, and explanation of the three different types of lotteries

used in the paper and some preliminary results on the use of pooling con-

tracts.

2.1 Competition in Financial Intermediation

Zero-profit and costless financial intermediaries (called banks) will com-

pete to attract depositors by offering the best possible contract that gen-

erates non-negative profits in expectation. The agent's assets are public

and are placed completely on deposit with the intermediary. The capital

input can be observed and controlled by the financial intermediary. Be-

cause agents live for only one period, contracts are single-period too. Both
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sides commit costlessly to the contract. Once contracts have been signed,

the intermediary can confiscate output costlessly. Intermediaries take as

given a risk-free rate of return on an interbank loan market. Because there

is purely idiosyncratic uncertainty (which the banks smooth away by con-

tracting with groups of agents), banks can borrow and lend freely at this

rate on behalf of their depositors.

Because banks compete with one another to attract depositors, a bank will

be unable to achieve zero profits by subsidizing the consumption of agents

of one wealth type with the output of agents of some other wealth type.

Banks attempting such a strategy would attract only the subsidized agent

type. Financial intermediation, therefore, acts as if agents of each wealth

type form a single bank, which makes zero profits. In the next section, I

present sufficient conditions for this structure to yield the Pareto-optimal

allocations. This will generally not be the case, because the social plan-

ner is not bound to respect a zero-profit condition on each wealth type.

(See Holmström (1982) for the classic work on this topic. This effect can

motivate a credit subsidy program for the poor.)

At the beginning of the period, one can imagine financial intermediaries

writing complicated contracts combining insurance and production with

agents. First, the intermediaries accept the agent's inherited stock of pro-

ductive wealth on deposit, which they then place on the interbank loan

market at rate �. Next, intermediaries determine how much capital the

agent should be allocated. Because they can use input lotteries, this choice

will be convex. Intermediaries borrow this amount on the interbank loan
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market. The contract also specifies how much the agent will be given to

consume and bequeath conditional on inputs and outputs. If the agent is

assigned some non-zero effort level, these consumption assignments will

have to satisfy the incentive-compatibility constraint. Idiosyncratic un-

certainty vanishes in the continuum, the intermediaries collect the output

and distribute it among the agents in order to honor their commitments.

Finally, agents consume and bequeath (by storage).

Let W (a; �) be the expected utility of an agent of wealth a when the inter-

bank interest rate is �. Banks must compete to attract customers, so they

offer contracts ya(�; q; z; k) to agents of wealth a in A to maximize this ex-

pected utility:

W (a; �) � max
ya(�; q; z; k) 2 X

X
�qzk

ya(�; q; z; k)U�z:(1)

This maximization must proceed subject to the zero-profit constraint:

X
�qzk

ya(�; q; z; k) (q + �a)�
X
�qzk

ya(�; q; z; k) (� + �k) � 0:(2)

As an accounting convention, the bank puts assets a entirely on the inter-

bank market, earning �a, and then borrows some amount k on behalf of

its agents, paying �k. Competition among banks will drive profits to zero.

Notice that this zero-profit condition must hold for each wealth type a.

The social planner would find it possible to violate these constraints for

individual agent types, while respecting the resource constraint.

Market clearing requires that capital demanded for use as inputs must
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equal the aggregate wealth in the economy. Thus:

X
a

 a
X
�qzk

ya(�; q; z; k)(k � a) = 0:(3)

This, combined with the banks' zero-profit condition (2), implies that:

X
a

 a
X
�qzk

ya(�; q; z; k)(q � � ) = 0;(4)

which simply states that total consumption must equal total output.

Define an equilibrium as:

Definition Given an initial distribution of wealth  0, an equilibrium is a se-

quence of interbank loan rates, contracts and wealth distributions:

n
�t; fy

a
t (�; q; z; k)ga2A;  a

t

o
1

t=0
;

that satisfy the following conditions:

1. For all t � 0, �t and fyat (�; q; z; k)ga2A satisfy:

(a) 0 < �t <1.

(b) Given �t, the set of period-t contracts fyat (�; q; z; k)ga2A inX solve the

bank's problem of maximizing the agent's expected utility, equation

(1), subject to the non-negative profit condition, equation (2), for each

agent type a in A.

(c) Bank profits are zero for each wealth type.

(d) At �t the interbank loan market clears, satisfying equation (3).
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2. For all t � 0, and for each wealth type, agents who receive a transfer of �

bequeath s� .

3. The mass of agents with wealth a0 in period t + 1 is given by:

 a0

t+1 =
X
a

 a
t

X
qzk

yat (� = a0=s; q; z; k):

2.2 The Nature of Lotteries

There are three types of lotteries present in this model. The first, and least

interesting type, are grid lotteries. These emerge as financial intermedi-

aries attempt to span the discontinuities in the consumption vector, � . Grid

lotteries appear only because variables that are normally taken as contin-

uous are required to be discrete, and I attempt to minimize their effect by

providing a dense grid over consumption in the numerical experiments.

In section 3 below I assume that the grid is dense enough to be treated as

an interval, so that grid lotteries disappear entirely. The second type are in-

put lotteries. These are lotteries over assignments of capital and effort. At

each outcome of these lotteries, there is a separate schedule of consump-

tion assignments conditional on output, and, if a non-zero effort level is

assigned, these must satisfy an ex post incentive compatibility constraint.

The third and final type of lottery present is a standard equilibrium lottery

formed as a convex combination of contracts and used to clear the market

for capital.

In the discussion that follows I concentrate on the effect of the second of

these three types: input lotteries. From the point of view of an individual
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agent, the contract specifies a probability, say 30%, of realizing a particular

capital level. From the point of view of a bank, the contract specifies what

fraction of agents of a particular wealth will be allocated that capital level.

These contracts allow the bank to concentrate the wealth of many poor

agents into the hands of a subset, making them richer. This is tantamount

to allowing banks to violate the zero-profit condition with respect to indi-

vidual agents, while satisfying it for all agents of the same wealth. Thus

these contracts allow intermediaries to pool the wealth of many agents and

distribute the pool among a smaller group of agents of the same wealth.

An agent who loses the input lottery, or wins the input lottery but suffers

the low output, is not necessarily consigned to zero consumption. There is

scope in the contractual structure to allow ex post transfers back from the

fortunate agents who won the input lottery and realized high output to

those agents who either lost the input lottery or suffered the low output.

To study the effect of input lotteries, I briefly outline how to construct

banks' optimal policies without them (more detail can be found in the ap-

pendix). Financial intermediaries are now restricted to contracts that as-

sign inputs with 100% ex ante certainty. Let WNL(a; �jz; k) be the utility of

an agent with wealth a when the interest rate is � who is assigned inputs

(z; k) in Z �K with certainty. A financial intermediary offering this input

combination chooses contracts yaNL(�; qjz; k) that satisfy:

W (a; �jz; k) � max
yaNL(�; qjz; k)

��(z) +
X
�q

yaNL(�; qjz; k)u(� ):(5)

Contracts must satisfy versions of the constraints (C1) through (C3). These
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are detailed in the appendix. The maximization proceeds subject to the

bank's zero-profit constraint:

�(a� k) +
X
�q

yaNL(�; qjz; k)(q � � ) � 0:(6)

Note that this constraint must hold separately for each z; k combination.

Given values of WNL(a; �jz; k) as determined above, for a borrower of par-

ticular wealth a when the prevailing interest rate is �, the bank chooses an

input combination z; k such that:

WNL(a; �) = max
(z; k) 2 Z�K

WNL(a; �jz; k):(7)

The bank is forced to assign an input combination with certainty. It picks

the one that produces the best utility for its borrower. Because WNL(a; �)

is formed from a constrained version of the maximization that produced

W (a; �), it must be the case that W (a; �) � WNL(a; �). This construction

leads directly to the observation that banks would always, if allowed, use

input lotteries. Notice that the market-clearing price � will be affected by

the presence or absence of input lotteries. Controlling for these general

equilibrium effects, it is not always necessarily the case that all agents will

be made better off by the introduction of input lotteries. This point is

considered in greater detail in the next section.
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3 An Example with Lumpy Capital

In this section I specify preferences, endowments and technology follow-

ing Aghion and Bolton (1997), and solve analytically for the optimal con-

tracts with and without input lotteries. Without input lotteries, the com-

bination of moral hazard and limited liability [in the sense of Sappington

(1983)] produces credit rationing. There is a threshold wealth required

to get loans. This credit-market failure produces a non-convexity in the

agent's expected utility. With the addition of input lotteries agents with

wealth below the threshold can trade their wealth for a fair lottery over

zero wealth and some high wealth above the threshold. I provide neces-

sary conditions for this extra contract to increase the market-clearing inter-

est rate, produce Pareto-optimal allocations, increase total economy-wide

output and for the distribution of wealth to converge to a unique invari-

ant distribution. The results in this section depend on several convenient

assumptions, including risk-neutral agents and a special technology. Fur-

ther, I do not here characterize the invariant distribution of wealth with-

out lotteries. In the next section I use numerical techniques to compare the

outcomes with and without input lotteries in a model which relaxes the

assumptions on technology and preferences. In addition, I can compute

the dynamics both with and without lotteries.
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3.1 Economic Environment

The economic environment is familiar: output Q can take on two values,

f0; 2g, where an output of zero means the project has “failed”; productive

capitalK is also limited to two values, f0; 1g; while effort Z is assumed to

be a dense grid on the interval [0; 1], so that contracts can be written essen-

tially treating effort as continuous. Agents are risk neutral, so that in prin-

ciple, transfersT could be limited to two values. However, to prevent grid

lotteries from affecting the evolution of the distribution of wealth, trans-

fers are also assumed to be densely gridded. The consumption transfer

grid T is on the interval [0; 2=(1� s�)], where � is a preference parameter

(see below) that will also turn out to be the highest market-clearing inter-

est rate. Assets A are assumed to satisfy A = sT. The savings rate s will

also have to be constrained. See section 3.5 below. Finally, the choice of

k2 = 1 and q2 = 2 is merely to conserve on notation. All of the following

results go through with more general value for k2 and q2.

Agents have preferences that are linear in consumption transfers and qu-

adratic in effort, so that:

U�z = � �
z2

�
; where 0 < � < 1.

The technology exhibits strong complementarity between capital and la-

bor effort:

P (q = 2jz; k) =

8<
: z if k � 1

0 if k < 1.
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3.2 Contracts

An element y of the contract space X can be interpreted as a probability

mass function over all possible events in the economy that satisfies certain

conditions. It is possible to rewrite the joint probability of a particular out-

come y(�; q; z; k) as a sequence of conditional probabilities. (The contract

y and all its component sub-lotteries in the discussion that follows are of

course conditional on wealth a and the interest rate �, but this notation is

suppressed here for clarity.) Thus let � be the probability of being assigned

the high capital level. This can be formed from the underlying contract by

integrating over all the other variables:

� �
X
�qz

y(�; q; z; k = 1):

With probability 1� � the agent is not assigned capital. Given the extreme

form of the technology, it makes no sense to assign him the high effort

level because the low output is certain. Call �0 the agent's assigned con-

sumption in that case, so:

�0 �
X
�

�y(�; q = 0; z = 0; k = 0):

Assume further that any desired �0 is always an element ofT, so that, con-

ditional on losing the input lottery [and thus the certain realization of low

capital, low effort and low output (k = 0; z = 0; q = 0)], the contract assigns

a consumption transfer �0 with certainty. This is the same as assuming

that there are no grid lotteries required to realize an expected consump-

tion transfer of �0.
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If the agent is lucky (that is, is assigned the high capital input), then the

agent will be assigned the high effort level with certainty. To see this,

note that uncertainty over effort assignments would cost the agent utility

(because �00(z) > 0), would not increase expected output once capital had

been assigned and would not help overcome the incentive compatibility

constraint, because condition (C3) must hold after the resolution of any

effort lottery. Therefore, conditional on assigning the high capital level,

the bank will assign a single effort level with certainty, assuming that the

the target effort is an element of Z. For convenience, assume that this is

always the case. (Even in the numerical work, it is possible to begin with

one specification of grid elements, and then recursively adjust the grids by

adding the expected value of any grid lotteries as an element of the grid.)

Call the assigned effort zICC. Thus:

y(z = zICCjk = 1) = 1; and:

y(z 6= zICCjk = 1) = 0:

Depending on the outcome of the project, the bank will transfer some

amount of the consumption good to the agent. Define � to be the transfer

conditional on the high output, q = 2, and � to be the transfer conditional

on the low output, q = 0, in the same way that �0 was defined above. Once

again, assume that T contains the right elements to avoid grid lotteries.

The choice of contract y can thus be boiled down to a choice of the parame-

ters f�; zICC; �0; � ; �g for each wealth type a inA. To describe valid contracts,

these parameters must satisfy conditions (C1) to (C3). The requirement
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that the contract be a valid lottery, (C1), can be satisfied if 0 � � � 1, if zICC

is in Z. and if �0; � ; � are all inT. The requirement that the contract respect

the underlying technology, (C2), can be satisfied by requiring that:

X
�

y(�; q = 2; z = zj; k = 1) = zj�; all zj in Z, and:

X
�z

y(�; q = 2; z; k = 0) = 0:

The final requirement is that effort assignments be incentive compatible.

Using the incentive compatibility constraint (C3) above, it is easy to show

that, if the agent has been assigned effort zICC and is contemplating a lower

effort level, ẑ < zICC, incentive compatibility requires that:

zICC � �(� � � )� ẑ:

Assume that the nearest point in Z less than zICC is zICC � h. This is the

largest possible deviation, ẑ. Thus the incentive compatibility constraint

requires that:

zICC �
�

2
(� � � ) +

h

2
:

Assume that the grid over effort assignments Z is so dense that we can

take h to be zero. (Other interpretations are that the bank has to satisfy

the “true” incentive compatibility constraint, formed when h = 0, or is

not exactly sure where the nearest grid point is.) Thus, given � and � , the

highest effort that may be assigned is:

zICC(� ; � ) =
�

2
(� � � ):(8)
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Notice that if the agent receives the project's payoff, so that � = 2 and

� = 0, incentive-compatible effort is zICC = �, which is also the first-best

effort level.

The agent's expected utility w from a contract f�; zICC; �0; � ; �g is:

�

�
zICC� + (1 � zICC)� �

z2
ICC

�

�
+ (1� �)�0:

Using the incentive compatibility condition (8) to substitute out zICC in

terms of � ; � , this can be rewritten as:

w(�; � ; � ; �0) = �
h�

4
(� � � )2 + �

i
+ (1 � �)�0:(9)

Finally, the bank must satisfy a zero-profit condition. Assuming that the

interbank interest rate is �, the bank's net revenues from a contract to an

agent of wealth a are:

R(�; � ; � ; �0ja; �) = 2�zICC � ��zICC � ��(1� zICC)� (1� �)�0 � �� + �a;

substituting zICC = �(� � � )=2 gives:

= ��(� � � )� �
h�

2
(� � � )2 + �

i
� (1 � �)�0 + �a� ��:(10)

Where the cost of capital, �, is multiplied by the probability of assigning

capital (or the proportion of agents of wealth a who are assigned capital),

�, to calculate the cost of funds.

The general problem of the bank in this environment can be cast as choos-

ing contracts (for each borrower type a in A) of f�(a); � (a); � (a); �0(a)ga2A

to maximize utility (9) subject to the condition that revenues, defined in

equation (10), be zero for each borrower type.
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3.3 Analysis Without Input Lotteries

Prohibiting input lotteries is tantamount to forcing the bank to choose a

level of � of either 1 (capital assigned with certainty) or 0 (capital denied

with certainty). If the bank chooses not to assign capital, then its maxi-

mization problem degenerates to:

max
�0

�0; subject to: �a� �0 � 0:

The optimal value of the transfer, � ?0 (a), is clearly just �a, and assigned

effort is zero. Thus write the agent's expected utility in this case as:

WNL(a; �j� = 0) = �a:

If the bank assigns capital with certainty (� = 1) then it chooses contracts

to maximize:

(11) WNL(a; �j� = 1) = max
� ;�2T

�

4
(� � � )2 + �

subject to: �(a� 1) + �(� � � )�
�

2
(� � � )2 � � = 0:

Because the smallest element of T is zero [there is limited liability in the

sense of Sappington (1983)], for agents with wealth a below the minimum

capital scale (a < 1), the optimal transfer when the project fails, � ?, will be

zero, and the optimal transfer when the project succeeds, � ?, will be less

than the high output, 2. This in turn, through the action of the incentive

compatibility constraint, equation (8), means that effort supplied under

the contract, zICC, will be below the first-best amount, �. Thus the optimal
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transfer policies are:

� (a) =

8<
: 0 0 � a � 1

�(a� 1) a � 1;

� (a) =

8<
: 1 +

q
1� 2�

�
(1� a) 0 � a � 1

2 + �(a� 1) a � 1:

From this, one can see that the supply of labor effort is:

zICC(a) =

8><
>:

�
2

�
1 +
q

1� 2�
�

(1� a)
�

0 � a � 1

� a � 1:
(12)

These results also point towards the credit-rationing result of Aghion and

Bolton (1997), namely, that a threshold wealth is required to obtain loans.

For borrowers of wealth a < 1, � (a) is real only if a > a?(�), where the

threshold wealth a?(�) is:

a?(�) = 1�
�

2�
:

Thus the expected utility of an agent who is assigned capital is:

WNL(a; �j� = 1; a � a?(�)) =
�

4

"
1 +

r
1�

2�
�

(1� a)

#2

:

Agents with wealth below the threshold a < a? cannot credibly commit to

work hard enough to make a loan worthwhile at any interest rate.

This analysis implies a maximum and a minimum possible value for the

market-clearing price, �. If � � �=2 then all agents will be assigned capital.

Thus let �min = �=2. On the other hand, if � � � then even rich agents will

be at best indifferent about operating the technology. Thus let �max = �.
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Banks will assign capital to agents with wealth above the threshold re-

quired to get loans only if their expected utility is greater with capital.

Thus the expected utility of an agent of wealth a, when the interest rate is

�, in a world without asset-pooling lotteries, WNL(a; �), is:

WNL(a; �) =

8<
: WNL(a; �j� = 0) if a < a?(�)

maxfWNL(a; �j� = 0);WNL(a; �j� = 1)g if a � a?(�).

Figure 1 plots the expected utility of an agent when input lotteries are

prohibited, and also when they are allowed. (See the next section.) Notice

the clear non-convexity in the expected utility schedule WNL at a? (here

a? = 1=3): with input lotteries, agents are able to convexify around this

region.

3.4 Analysis with Input Lotteries

Input lotteries will allow banks to write contracts that allow poor agents –

that is, agents with wealth below the threshold required to get loans – ac-

cess to capital. Banks will pool the assets of all agents of the same wealth

and concentrate it in the hands of a selected subgroup. This subgroup will

be chosen at random, because all agents are completely identical. This

type of contract replicates the lot rosca studied by Besley, Coate and Loury

(1993, 1994). The input lottery will smooth out the non-convexity in ex-

pected utility as a function of wealth, in a fashion identical to the “gam-

bling for life” literature.2 Sadler (1998) studies a version of this problem,
2See Rosen (1997) for further references to this literature. It has long been understood

that non-convexities, or “indivisibilities,” in choice sets provide a motive for gambling.
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Figure 1: Expected utility with (dashed) and with-
out (dotted) input lotteries when � = 0:95 and � =
0:7125.
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and shows that even risk-averse agents would be willing to take gam-

bles when faced with credit-market non-convexities. Agents who are not

credit rationed, and who would have been assigned credit anyway, will

also avail themselves of these lotteries. In figure 1 these agents are located

above the non-convexity but below the eventual target wealth.

The structure of the problem is the same as in the previous section, except

that now banks may use a further control variable. As in the previous

section, the non-negativity constraint on transfers will be binding for poor

agents, so that agents with wealth below unity get a positive transfer only

if they realize the high output. As before, � = 0. Without input lotteries,

the transfer conditional on not being assigned the high capital level, �0,

was just �a. Now, with input lotteries, agents will prefer to concentrate

all of their wealth into the state of the world in which they win the input

lottery, so �0 = 0. (This result depends on risk neutrality.) From equation

(10), write the bank's revenue function as:

R(�; � ja; �) = ��� �
1
2
���2 + �a� ��:

The bank's zero-profit condition is thus R(�; � ja; �) = 0. Divide both sides

of this equation by the probability of being assigned capital, �, to form:

�� �
�� 2

2
+ �

a

�
� � = 0:

The term a=� can be thought of as the “target wealth” of the input lottery:

all of the agent's wealth is concentrated into the state of the world in which

In another context, firms that are in financial distress will undertake risky projects so that

in some states, at least, they are not bankrupt.
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he wins the input lottery. The less likely this state is, the greater his wealth

in it. Because � is also the proportion of agents of wealth a who win the

input lottery, a=� can also be thought of as the wealth transfer from the

pooling group as a whole to those agents designated as managers.

By substituting in from equations (9) and (10) the bank's maximization

problem is:

(13) W (a; �) = max
� ;�2[0;1]

�
�

4
� 2 + (1� �) � 0

subject to: � 2 � 2� +
2�
�

�
1�

a

�

�
= 0:

Another way to think about this problem is as a two-stage contract. In the

first stage, banks concentrate a poor agent's wealth a into an amount a=�

with probability �, and zero with probability 1 � �. In the second stage,

the input lottery outcome has been realized, and there are two possibili-

ties. Either the agent was lucky and won the input lottery, and now has

wealth a=�, or the agent was unlucky and lost the input lottery and now

has wealth zero. In either case, the bank then writes contracts with the

agents as if there were no input lotteries. This tremendous simplification

is entirely due to the assumption of risk-neutrality and limited liability. If

agents were risk averse they would want insurance against the possibil-

ity of losing the input lottery, so �0 could be non-zero, in which case this

derivation does not go through. In the next section, I solve a range of nu-

merical examples with risk-averse preferences and find similar differences

between economies with input lotteries and economies without them.
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Thus the bank's problem (13) may also be written as:

W (a; �) = max
�

�WNL(a=�; �j� = 1) + (1� �)WNL(0; �j� = 0):

The wealth variable a and the choice variable � can be replaced by the

target wealth of the gamble, aTARG = a=�. From this it follows that the target

wealth does not vary with own-wealth. Thus all agents who engage in

an input lottery are seeking the same target wealth, poorer agents merely

have a lower probability of achieving it.

Solving the bank's problem (13) above in terms of the target wealth, aTARG,

reveals that the optimal target is:

aTARG(�) =
2�
�
� 1:(14)

The associated lottery probability, �(a; �), is a=aTARG(�). Notice that at the

highest-possible interest rate, �max, the target wealth is unity, which is ex-

actly the amount of capital required to operate the technology. At this

interest rate, all agents with wealth a � 1 will be in a pooling group, and

�(a; �max) = a, so they will use capital equal, in expected value, to their own

wealth level. For all interest rates below �max, the target wealth will be be-

low unity, so that even lucky agents in the asset-pooling group will still be

net borrowers. Also, there will be some agents with wealth aTARG < a < 1

who will be net borrowers but will not be in a pooling group.

Banks will never assign rich agents (agents with wealth a > 1) to pooling

groups. As long as the interest rate satisfies � � �max, banks will set � = 1

for rich agents.
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With this formulation, it is now possible to write down W (a; �), the ex-

pected utility of an agent with wealth a at interest rate � when input lot-

teries are permitted. Thus:

W (a; �) =

8<
: (a=aTARG)WNL(aTARG; �) if 0 � a � aTARG

WNL(a; �) if a � aTARG.

Notice that W (a; �) is linear in wealth below aTARG.

3.5 Effect of Lotteries

In the following results, I will require that the richest individual in the

economy be unable to finance the project out of own funds. One can inter-

pret this is as requiring that the economy be “poor” or that the project be

large relative to household wealth. Let amax be the wealth of the richest in-

dividual in the economy. In the propositions below, I require that amax � 1.

I also provide sufficient conditions for the unique invariant distribution of

wealth to satisfy amax � 1, so that all of these results will hold eventually.

Proposition 1 (Interest Rate)

For any distribution of wealth  such that amax � 1, the market-clearing inter-

est rate with input lotteries will be greater than the market-clearing interest rate

without input lotteries.

Proof: See the appendix.
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Proposition 2 (Aggregate Output)

For any distribution of wealth that satisfies amax � 1, the equilibrium aggregate

output is higher with input lotteries than without them.

Proof: See the appendix.

Proposition 3 (Pareto Optimality)

For any distribution of wealth  such that amax � 1, the equilibrium allocation

with input lotteries produces utilities !(a) that are Pareto optimal. The shadow

value of capital of the social planner is the market-clearing equilibrium interest

rate.

Proof: The proof is in the appendix. Although algebraically complex, it is

conceptually straightforward: the equilibrium generates a set of expected

utilities by wealth. When plugged into the social planner's problem as

promised utilities, the social planner realizes a zero surplus.

Now consider the dynamics of this model. If the savings rate is above

a critical level, the presence of lotteries merely accelerates growth to the

same distribution studied by Aghion and Bolton (1997). In the comple-

mentary case, in which savings is low, it is a simple procedure to char-

acterize the invariant distribution with lotteries. A subsistence technol-

ogy (suppressed until now for expositional clarity) is required for non-

degenerate dynamics. Without it, zero wealth becomes an absorbing state.

Assume that any agent may completely abjure intermediation and place

all capital and zero labor into a backyard technology in exchange for an

� probability of realizing the high output. This is merely the most conve-

30



nient form of the subsistence technology. Nothing crucial depends on the

assumption that own-capital is completely absorbed by the subsistence

technology.

Proposition 4 (Convergence)

If the savings rate s satisfies s � 1=2 and if there is a subsistence technology as

defined above, then, for any initial distribution of wealth, the equilibrium price

converges to �max and the distribution of wealth converges to  ?, in which a

proportion  ?
0 have wealth a = 0 and the remaining proportion  ?

1 have wealth

2s, where:

 ?
0 =

1� 2�s
1� 2�s + �

; and:

 ?
1 =

�

1� 2�s + �
:

Proof: See the appendix.

4 An Example with Risk Aversion

In this section I solve numerically a model with risk averse agents and

multiple input choices. I use a version of the linear programming-based

techniques of Phelan and Townsend (1991) to solve for the competitive

equilibria with and without asset-pooling lotteries. (See also Prescott (1998)

for recent developments in this literature.) I can compare the resulting

time paths of wealth heterogeneity and market clearing interest rates along

the transitions to the steady-state to determine the effect of adding asset-
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pooling lotteries.

I find that asset-pooling lotteries cause faster growth to a higher steady-

state aggregate capital level and invariant distributions of wealth which

feature greater inequality.

Economies with lotteries are more unequal for a variety of reasons. First,

for the same distribution of wealth, the market-clearing interest rate is

higher, so that small differences in wealth translate into larger differences

in average consumption. Second, agents are in general assigned higher

effort with lotteries, so that the incentive compatability constraint requires

a greater variation in consumptions conditional on output. Third, the lot-

teries themselves promote inequality directly by rewarding lucky agents

and punishing unlucky agents. If, without lotteries, a class of agents are

“poor savers”, then they will consume and bequeath equally. If, by adding

lotteries, that same class of agents enter a pooling group, then the lucky

ones will consume more than the unlucky ones.

Economists have generally known that the complementarity between la-

bor effort and capital affects optimal contracts.3 To study this effect, I

specify the technology to be CES and vary the complementarity param-

eter. Generally, I find that richer agents wish to supply less effort than

poorer agents. If capital and labor effort are complements, this means

that poor agents should be assigned capital, while if they are substitutes,

3See, as only one example in a large literature, Dupor (1998). In the context of moral-

hazard constrained contracting, Lehnert, Ligon, and Townsend (1998) consider the effect

of complementarity in a model in which capital is not accumulated.
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poor agents should not be assigned capital. Thus the capital allocation

curve, that is, how assigned capital varies with wealth, depends critically

on the technological complementarity between capital and labor. One in-

terpretation of so-called trickle-down dynamics is that the capital allocation

curve is, in poor economies, steeply upward sloping, while in developed

economies it is flatter. Those dynamics arise here if capital and labor are

substitutes.

If capital and labor are complements, then there may be trickle-up dynam-

ics, in which the capital allocation curve slopes down, and flattens as the

economy develops. That is, if capital and labor are complements, then in

poor economies, a rich agent does no work, is assigned no capital and con-

sumes the rental value of his wealth. That same rich agent, in a relatively

richer economy with a lower risk-free rate, might, in contrast, be assigned

effort and capital, and consume both his (lower) rental income and the

proceeds of his productive process.

4.1 Parameter Values

Agents are risk-averse, with a utility function given by:

U�z = 2
p
� �

1
4
z:

Effort is limited to two values, so that Z = f0; 0:9g. Output can also take on

only two values,Q = f0; 2g. Capital can take on one of five values linearly

spaced between 0 and 1, K = f0; 0:25; 0:50; 0:75; 1g. The technology is
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chosen to mimic a standard CES production function in expected value,

with the added constraint the probability of success or failure never be too

high or too low. Thus:

g�(z; k) = (z� + k�)1=� ; and:

P�(q = 2jz; k) =

8>>><
>>>:

0:05 if g�(z; k) � 0:05

g�(z; k) if 0:05 � g�(z; k) � 0:95

0:95 if g�(z; k) � 0:95:

As part of the numerical experiment, I calculate equilibrium sequences

and transition paths with and without lotteries for eight different values

of �:

� = f�100;�1;�0:5;�0:1; 0:1; 0:5; 1; 100g:

Negative values of � mean that capital and labor effort are complements

(both are required to realize high output), while positive values mean that

capital and labor effort are substitutes (either can be used to realize the

high output). The extreme values of �, -100 and 100 approximate a perfect

complements (Leontieff) technology and a super-substitutes technology.

The choice of � = 100 is unusual and deserves explanation. As � grows,

the technology converges to the maximum operator, so that:

lim
�!1

g�(z; k) = maxfz; kg:

This is a quasiconvex function, and is seldom used. It is useful here, how-

ever, because it allows agents to realize the high output with either a high

capital or a high effort level. Under the more standard formulation of per-

fect substitutes, � = 1, the technology is:

g�=1(z; k) = z + k:
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Notice that, although their marginal contribution to output is independent

of the other input level, both capital and labor are required to make sure

of the high output.

The savings rate is fixed at s = 0:3. In the numerical work, I found it more

convenient to have intermediaries assign utility conditional on outcomes.

Each assigned utility has an associated transfer and bequest policy. I pro-

vided a grid of 81 linearly-spaced utility points. This is equivalent to hav-

ing 81 nonlinearly-spaced transfer and bequest points, with a denser con-

centration of points near the low end of transfers (where the utility func-

tion is more curved). Because of computational constraints, richer speci-

fications of the technology, which feature more effort and capital points,

must come at the cost of a sparser grid over transfers T. This introduces

undesirable grid lotteries into the computed solutions. The choice of tech-

nology here sacrifices some measure of technological verisimilitude in fa-

vor of a very dense grid over consumption transfers, T.

4.2 Results

I begin with a detailed analysis of the case when � = �0:5 (a typical case),

and then discuss the results across all values of �.4

In figures 2 and 3 I plot the evolution of the distribution of wealth with

4The equivalent results from all the other values of � are suppressed to save space.

They are available to the interested reader.
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and without lotteries for the case when � = �0:5; while in figures 4 and

5 I plot the evolution of the total amount of wealth and the market clear-

ing interest rate in both economies. Both economies begin with all agents

endowed with zero capital. Because the minimum probability of the high

output is 0.05, 5% of these agents get the high output, and the resulting

output is distributed equally to all agents, because there is no moral haz-

ard. Once there is a little bit of capital in the economy, differences begin

to emerge between the lottery and the no-lottery economies. These differ-

ences are initially small but cumulative. The no-lottery economy remains

relatively poor with a concentrated wealth distribution, while the lottery

economy is richer, with a less concentrated wealth distribution. Notice

that the market-clearing interest rate, in figure 5, is initially greater in the

economy with lotteries. Eventually the lottery economy becomes so much

richer than the no-lottery economy that the market-clearing interest rate

in the lottery economy falls well below the no-lottery economy.

The invariant distributions of wealth arrived at by both economies are dis-

played in figure 6. In figure 7 I plot the Gini coefficient (a common scalar

measure of inequality) over time for both economies. Without lotteries,

inequality rises steadily as the economy converges to the invariant distri-

bution. With lotteries, there is an early surge in inequality, which then

peaks and moderates slightly. This effect is much more dramatic for other

values of �. When � = �1, for example, the Gini coefficient peaks near

0.23 before falling to its steady-state level of 0.125. This accords well with

the Kuznets hypothesis about inequality over the development cycle. For

a careful microeconomic decomposition of inequality over time in Thai-
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land, see Jeong (1998).

In figure 8 I plot the evolution of aggregate capital from several differ-

ent initial distributions. These different initial distributions feature differ-

ent average wealth levels. Two of them begin with more capital than the

steady state, so over time capital falls. The distributions converge to the

same invariant distribution.

Repeating this analysis for all values of � yields a steady-state capital level

and market-clearing interest rate for each. These are displayed in figures

10 and 11. Notice that the solutions are close at the extreme values of �,

but differ markedly in between. Notice also that economies with substi-

tutes technologies (high values of �) are richer no matter what the financial

structure. This is because the production possibilities set is larger when ei-

ther capital or labor may be used to achieve the high output. In all cases

the economy with lotteries features a higher steady-state aggregate wealth

level than the economy without them.

In general, invariant distributions in economies with lotteries feature gr-

eater inequality than in economies without lotteries. In figure 9 I plot the

Gini coefficients from the invariant distribution of wealth at each value of

the complementarity parameter �. Notice than in seven of the eight cases,

the Gini measure of inequality is higher with lotteries than without them.

Only when � = 0:1 is the lottery economy more equal than the no-lottery

economy, and even there they are close. Note also that in most cases the

Gini coefficients lie between 0.05 and 0.20, well below the estimates of
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modern developed economies, which lie between 0.4 and 0.6.
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Figure 2: Evolution of the distribution of
wealth with input lotteries.
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Figure 3: Evolution of the distribution of
wealth without input lotteries.
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Figure 4: Evolution of aggregate wealth with
and without input lotteries.
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5 Conclusion

Group lending is usually taken to mean a joint-liability credit contract.

This sort of lending is preferable because group members have an incen-

tive to encourage others in their group to repay loans and may have means

to pressure or monitor their peers not available to outside institutions. (See

Ghatak and Guinnane (1998) for an excellent survey of this literature.) In

this paper I have identified a subtle variant on this common and interest-

ing contract. This paper concentrated on the ability of a group to pool its

assets. The value of the summed assets is greater than the summed value

of the assets because of non-convexities built into the technology and aris-

ing from endogenous credit rationing.

Most researchers agree that credit market imperfections play an important

role in development. Recent models have focused on the productive costs

of wealth inequality and the possibility that the poor might be trapped in

poverty forever. This paper adopted the same general framework used in

the literature (a capital market with a moral hazard problem) but allowed

financial intermediaries to write very general contracts, based on lotter-

ies, with borrowers. The asset-pooling contracts that then endogenously

emerged closely resemble roscas, or rotating savings and credit associa-

tions.

This contractual innovation produced a host of interesting results. Lotter-

ies interacted with credit markets to allow poor agents to escape the ef-

fects of credit rationing, and the invariant distributions of wealth featured
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a higher mean but also increased inequality with lotteries. Input lotteries

could produce Pareto optimal outcomes, but not necessarily Pareto domi-

nate allocations without lotteries.

How can we use these results in thinking about economic development?

Because lotteries act as a pooling device, this paper can be thought of

as discussing the consequences of pooling mechanisms in development.

There is plenty of evidence that roscas play an important role in developing

societies. Similar institutions, among them the familiar building societies,

played an important role during the industrial revolution in developed

countries [see Landes (1969)]. Alternatively, these results can be thought

of as pointing towards the effect of better financial intermediation.

Given the structure of competition among financial intermediaries, this

paper featured no barrier to contracts other than an endogenous moral

hazard constraint. Pooling contracts could be victims of a host of other

problems: they could be prohibited by government fiat (perhaps for do-

mestic political reasons); some cost to financial contracting (not modeled

in this paper) could further constrain contracts between borrowers and

lenders; or there could be a commitment problem, with either agents or

intermediaries allowed to renege on their obligations. When examining

institutions as they exist in developing countries we have to keep this list

of calamities in mind.

Presented with two otherwise identical nations, differing only because in

one (for the reasons outlined above) asset-pooling groups do not exist,
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while in the other nation they do exist, we would expect the former nation

to grow more slowly and settle down to a lower capital level than the latter

nation. The nation without pooling groups, however, would feature less

inequality than the nation with pooling groups.
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Appendix

The Incentive Compatibility Constraint

The incentive compatibility constraint in the contract space X, (C3), can be de-
rived following Prescott and Townsend (184a,b) and Phelan and Townsend (1991).
One can think of the contract as specifying a conditional sub-lottery over con-
sumption � upon the realization of output q with probabilities x(� jq). Thus for
expected utility given an assigned effort z and capital k to dominate the expected
utility from a contemplated deviation in effort to ẑ, x(� jq) must satisfy:X

�q

x(� jq)P (qjz; k)U�z �
X
�q

x(� jq)P (qjẑ; k)U� ẑ :

This may be rewritten as:

X
�q

x(� jq)P (qjz; k)U�z �
X
�q

x(� jq)P (qjz; k)
P (qjẑ; k)
P (qjz; k)

U� ẑ :

Multiplying by the marginal probability of a particular assignment (z; k) pro-
duces:

X
�q

x(�; q; z; k)U�z �
X
�q

x(�; q; z; k)
P (qjẑ; k)
P (qjz; k)

U� ẑ :

Which is, of course, exactly the constraint in equation (C3) above.

There are a few subtleties to the incentive compatibility constraint as used in this
paper. The order of inputs, for example, makes a critical difference. The model
assumes that capital is applied before effort, so that the agent knows k before
selecting z. If capital k were selected after effort z, so that the agent could only
know the distribution of possible values of capital when choosing effort, then the
incentive compatibility constraint would be:

X
�qk

x(�; q; z; k)U�z �
X
�qk

x(�; q; z; k)
P (qjẑ; k)
P (qjz; k)

U� ẑ :

When choosing z, with k not known, the agent must use the contracted proba-
bility distribution x in determining the expected utility values of various plans.
Notice that, because there are now only n2

Z constraints, as opposed to n2
ZnK in
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(C3) above, X would be a larger set. The extra choices lead to solutions that are
weakly better. On the other hand, it seems more natural to have effort supplied
conditional on a particular capital input to the technology, and it is the usual
specification in the literature.

Because the capital input is public, the suggested capital input level does not
need to be induced. If, however, capital were private, so that, for example, agents
were free to reinvest any capital transfers anonymously in banks before the res-
olution of production uncertainty, then suggested capital levels would have to
be induced. The benefit to deviations in capital level would be purely pecuniary.
Optimal contracts subject to this “input diversion” constraint are studied in much
greater detail by Lehnert, Ligon, and Townsend (1998), who find that it can dra-
matically alter input use.

Contracts Without Input Lotteries

Let WNL(a; �jz; k) be the expected utility of an agent with wealth a when the
market-clearing interest rate is �, who is assigned input combination (z; k) with
certainty. LetWNL(a; �) be the expected utility of an agent when the bank has cho-
sen the best input combination (z; k). Thus he bank chooses contracts yaNL(�; qjz; k)
to solve:

WNL(a; �jz; k) � max
yaNL(�; qjz; k)

��(z) +
X
�q

yaNL(�; qjz; k)u(� ):

The maximization proceeds subject to the bank's zero-profit constraint:

�(a� k) +
X
�q

yaNL(�; qjz; k)(q � � ) � 0:

Note that this constraint must hold separately for each z; k combination.

The distribution over outputs is determined by the choice of non-stochastic in-
puts. Thus for each q in Q, given a choice of inputs z; k, the Bayes compatibility
constraint (C2) becomes:X

�

yaNL(�; qjz; k) = P (qjz; k); all q; z; k inQ� Z�K:(15)
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Finally, the assigned effort must be incentive-compatible, so that if inputs z; k are
assigned, the contract yaNL(�; qjz; k) must satisfy, for all possible deviations ẑ in Z:

(16)
X
�q

yaNL(�; qjz; k)
n
u(� )� �(z)�

P (qjẑ; k)
P (qjz; k)

[u(� )� �(ẑ)]
�
� 0; all q; z; k inQ� Z�K.

Notice that there may be no contract yaNL(�; qjz; k) for a particular combination z; k
that satisfies conditions (6), (15) and (16). If this is the case, let WNL(a; �jz; k) �
�1. Clearly, there is at least one contract that does satisfy conditions (6), (15) and
(16), namely, one that assigns the lowest effort and capital level, z = 0; k = 0 and
has transfers that equal the output realizations, � = q.

Proof of Proposition 1

The equilibrium with lotteries is easy to calculate. At � the aggregate demand for
capital with lotteries is:

Kd(�) =
X
a

 a�(a; �):

That is, if banks assign a proportion �(a; �) of each wealth type capital, then the
aggregate demand for capital is the weighted sum of the proportions. From equa-
tion (14) above, it is clear that aTARG(�max) = 1, so �(a; �max) = a. Thus, with lotter-
ies:

Kd(�) =
X
a

 aa:

But this is just the aggregate quantity of capital in the economy. Further, if � <
�max, then �(a; �) > a, so the aggregate demand exceeds aggregate supply.

Without lotteries, in contrast, when � = �max no agents with wealth a < 1 will
operate the technology. If there is any capital in the economy then the capital
market has not cleared. Thus the equilibrium interest rate without lotteries must
be strictly less than �max.

48



Proof of Proposition 2

The strategy here is to show that output with lotteries attains the first-best level,
and that output without lotteries must fall short of this level. With lotteries, from
proposition 1, the equilibrium interest rate must be �max. Hence from equation
(14) it is clear that the target wealth is aTARG(�max) = 1 and the probability of win-
ning the input lottery, �(a; �max) is just a. From equation (12), it is clear that the
effort assigned those agents who win the lottery will be zICC = �. Thus each agent
has a probability a� of realizing the high output (in this case, 2). Hence aggregate
economy-wide output with lotteries, Q, is

Q = 2�
X
a

 aa;

or simply 2�a, where a is the total amount of capital in the economy. Notice that
this is the first-best amount of output and that each unit of capital is used in a
project in which the supplied effort is �.

Next, note that, without lotteries, at least some units of capital must be used in
projects in which the supplied effort is below �. From equation (12) above, it is
clear that, without lotteries, assigned effort can be � for agents with wealth a � 1
only if:

�

2

"
1 +

r
1� 2�

�
(1� a)

#
= �:

This is true iff:

�(1� a) = 0:

In other words, assigned effort without input lotteries is less than � unless either
� = 0 or a � 1. Because the minimum possible interest rate is �min = �=2, which
is greater than zero, this means that it is impossible to assign agents with wealth
below unity an effort of �. If there are any agents with wealth strictly less than
unity, then output must strictly be less than 2�a.

Proof of Proposition 3

From proposition 1 above we know that the equilibrium interest rate must be �;
further, from equation (13) we know that the expected utility of an agent of wealth
a is a�.
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The planner must also choose contracts which lie inX. Here, the planner's prob-
lem is written with the incentive compatibility constraint and the Bayes' compat-
ibility constraint explicitly formulated for convenience:

max
�a2L

X
a

 a
X
�qzk

�a(�; q; z; k)(q � � ); subject to:

X
�qzk

�a(�; q; z; k)U�z = !(a); all a inA,(P1)

X
a

 a

2
4
0
@X

�qzk

�a(�; q; z; k)k

1
A � a

3
5 � 0;(P2)

X
�q

�a(�; q; z; k)
�
U�z �

P (qjẑ; k)
P (qjz; k)

U� ẑ

�
� 0;(P3)

all z; ẑ; k in Z� Z�K, and the final constraint:

X
�

�a(�; q; z; k) = P (qjz; k)
X
�q

�a(�; q; z; k):(P4)

Now replace these choice variables with the familiar choices:

f�(a); �0(a); � (a); � (a)ga2A;

used in the equilibrium analysis above. As before, we replace the incentive com-
patibility constraint (P3) with the condition that assigned effort be equal to �(� �
� )=2. The policies are Bayes compatible with the underlying probability distribu-
tion if the high output is taken to occur with probability �z.

Imagine that the planner has committed to provide an expected utility of x and
no capital with certainty. Let the function D(x) be planner's surplus in this case:

D(x) � max
�0

��0; subject to:

�0 = x:

It is easy to see thatD(x) = �x. Now consider the planner's surplus if she assigns
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capital to the agent with certainty:

D(x) � max
� ;� ;zICC

zICC� + (1� zICC)� ; subject to:

zICC =
�

2
(� � � );

zICC� + (1� zICC)� � z2
ICC

�
= x;

� ; � � 0:

For x � 0 only the non-negativity constraint on � will bind. Begin by substituting
out the incentive compatibility constraint. The constrained optimization problem
then becomes:

D(x) = max
� ;�

L(� ; � ; �1; �2); where:

L(� ; � ; �1; �2) = �(� � � )� �(� � � )2 � � +

�1[�(� � � )2 � � � x] + �2� :

The first-order conditions for maximization require that:

�1 = 1� �2; and:

�2 = �1 +
p
�=x:

If the non-negativity constraint does not bind, so that �2 = 0, promised utility
must satisfy:

x � !?; where !? � �.

Here !? is a “critical utility” which will play an important role later. Thus for
agents with promised utility below the critical utility, x < !?, we know that the
non-negativity constraint on � will bind. Hence we can split the optimal policies
into two sections:

� (x) = 0; and � (x) = 2
p
x=� if 0 � x � !�;

� (x) = x� !�; and � (x) = x� !� + 2 if x � !�:

Thus we can write D(x) as:

D(xj0 � x � !�) = 2
p
�x� 2x(17)

D(xjx � !�) = !� � x:
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Figure 12: The functions D(!) (solid) and
D(!) (dotted) when � = 0:5.

Note that for x � !�, D has an increasing component. This produces the well-
known upward-sloping portion of the Pareto frontier so familiar in models with
moral hazard constraints [see e.g. Phelan and Townsend (1991)]. In figure 12 I
display typical schedules of D(!) and D(!).

We can now completely rewrite the planner's problem:

max
�(a); !(a); !(a)

X
a

 a
�
�(a)D(!(a)) + (1� �(a))D(!(a))

�
;(18)

subject to: �(a)!(a) + (1� �)!(a) = !(a);X
a

 a�(a) = a;

!; ! � 0:

Thus the planner can be seen as choosing a joint lottery over capital and utility
assignments. Because D(x) > D(x) the planner finds it cheaper to assign higher
utility along with higher capital levels.

The planner's optimal plan will be to set ! = 0, ! = !� and then adjust �(a) to
match the promised utility of the agent, so that �(a) = !(a)=!�.
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To see this, consider a planner who chooses some values !(a); !(a) for an agent
with promised utility !(a). To satisfy the promise-keeping constraint, �(a) must
then satisfy:

�(a) = f (a) � !(a)� !(a)
!(a)� !(a)

:

Note that the derivatives of f with respect to ! and ! are:

@f

@!
= � f

! � !
and

@f

@!
= � 1� f

! � !
:

Rewrite the planner's problem (18) in terms of f , removing the promise-keeping
constraint. Let � be the multiplier associated with the resource constraint. The
first-order necessary conditions for optimality are:

2
p
�!(a)� !(a)� (!(a)� !(a))

r
�

!(a)
= �(19)

2
p
�!(a)� !(a) = �(20) X

a

 af (a) = a:(21)

Combining equations (19) and (20) immediately produces:

!(a) = �; and:

� = �:

Notice that the shadow-price of resources, �, is the equilibrium interest rate, � =
�?. To find !(a) consider the resource constraint, equation (21):

X
a

 a
!(a)� !(a)
!(a)� !(a)

=
X
a

 aa:

By proposition 1 we know that the competitive equilibrium produces expected
utilities:

!(a) = a�; or:

!(a) = aw?:

Combined with the earlier result that !(a) = w?, the resource constraint becomes:

X
a

 a
aw? � !(a)
w? � !(a)

=
X
a

 aa:
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Because amax � 1, !(a) = 0 all a. This in turn provides a policy for �:

�(a) = a:

So that an agent's wealth determines the probability of getting the capital assign-
ment.

Finally, we must determine the value of the planner's surplus. Because !(a) = w?

and !(a) = 0, and because D(w?) = 0 and D(0) = 0, we see immediately that the
planner's surplus must be zero. The planner does not have a positive surplus
at the expected utilities generated by the competitive equilibrium. Hence the
equilibrium allocations must lie on the Pareto frontier.

Proof of Proposition 4

In this discussion, let a0(a; �) be the bequest of an agent of wealth a when the
interest rate is �. By assumption, s� < 1, so successful (and rich) agents with
wealth a > 1 bequeath:

a0(a � 1; �jsuccess) = s[2 + �(a� 1)] < a:

Unsuccessful (and rich) agents with wealth a > 1 bequeath:

a0(a � 1; �jfailure) = s�(a� 1) < a:

The richest agent in the economy will eventually have wealth amax = 2s � 1.
From this point forward the interest rate will be �max from proposition 1 above.
In figure 13 I display the wealth transitions with lotteries. Agents with wealth
below af will choose to forgo intermediation and use the subsistence technology,
where af = 2�=�.

Now consider the unique invariant distribution to which all initial distributions
converge. From the discussion above, it is clear that the richest member of the
economy, with wealth amax will eventually satisfy amax � 1 and the equilibrium
discussion from above will hold, so that �? = �max. Say that this occurs in some
period, called, arbitrarily, period t = 0 and that the distribution of wealth is  0(a).
Of all agents with wealth a < af , a proportion � will bequeath a0 = 2s while the
remaining 1�� bequeath a0 = 0, and of all agents with wealth a � af , a proportion
a� will both win the input lottery and have the high output, so bequeathing a0 =
2swhile the remaining 1�a� bequeath a0 = 0. Thus in the next period, t = 1, there
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will be only two types of agents: agents with wealth 0 and agents with wealth 2s.
Furthermore, agents will transition only between these two wealth levels. The
Markov transition matrix for these states, following Hamilton (1994), is:

P =
�

1� � 1� 2�s
� 2�s

�
:

Here the columns of P give today's state while the rows give tomorrow's. Thus,
given that an agent has zero wealth, the probability of remaining at zero wealth
is 1� � while the probability of transiting to 2s is �. In the same way, given that an
agent has 2s, the probability of falling to wealth 0 is 1�2�s, while the probability
of remaining there is 2�s.

By solving the eigenproblem associated with P , one can find the eigenvector as-
sociated with the unit eigenvalue. This gives the distribution of wealth between
the two possible wealth states. It is:

 ? =
�

1� 2�s
1� 2�s + �

;
�

1� 2�s

�
:

The aggregate steady-state wealth in this economy is thus a
1

= 2s�=(1�2�s+�).
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Numerical Techniques

Because the objective function (1), the contract constraints (C1), (C2), and (C3)
and the zero-profit condition (2) are all linear in the choice objects ya(�; q; z; k), for
a given set of parameters, wealth a and interest rate � it is in principle a simple
matter to calculate the optimal contract. Given the optimal contracts and the
distribution of wealth at time t, one can search for the market-clearing interest
rate, �?t , and next period's distribution of wealth. I now describe this process in
greater detail.

Let N = nTnQnZnK be the length of the contract vector. Each position along
the vector corresponds to a unique event, that is, a combination of consumption
transfer � , output q, effort z and capital k. Thus the last entry in the vector might
correspond to the event that the highest capital and effort levels are assigned
(and used), that the highest output is realized and that the highest possible con-
sumption transfer is made. For concreteness, assume that variables are ordered
as T;Q;Z;K, so that the first nT elements of the event space correspond to the
events fT; q1; z1; k1g, the next nT elements to fT; q2; z1; k1g and so on. Let Te be
the 1�N vector of transfer values at each point in the event space:

Te � 10N�nT 
T
0:

Here 1m is them�1 vector of units and
 denotes the Kronecker product. Define
Qe;Ze;Ke in the same fashion.

Objective and Constraints

I now describe how to form the linear programming objective vector and con-
straint matrix for a particular combination of wealth and the interest rate, (a; �).

The bank's objective function, equation (1), is the utility of the agent at each point
along the event vector. This can be written as:

COBJ � u(Te)� �(Ze):

The bank's zero-profit condition will vary depending on the agent's wealth a and
the interest rate under consideration, �. Thus let:

CZP(a; �) � Qe �Te + �(a�Ke):
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Banks will be required to make zero profits in equilibrium, so let BZP = 0:

Most linear-program solvers easily constrain the choice variables to be positive.
To sum over all contract weights, let:

C1 = 10N :

The contract weights must sum to unity, so let B1 = 1:

The Bayes' consistency constraint, (C2), will take the form of a separate constraint
for each q; z; k combination. For a particular combination of inputs and output,
let:

C2(q; z; k) � i(q; z; k)� P (qjz; k)i(z; k):

Here i(q; z; k) is a 1 � N vector with unit values only where Qe = q, Ze = z and
Ke = q, with zeros elsewhere. i(z; k) is defined in a similar fashion. There will
be nQnZnK separate constraints of this form. For each constraint, the right hand
side must be zero, so let B2 be a column vector of zeros of length nQnZnK .

Finally, the incentive compatibility constraint, equation (C3), must hold sepa-
rately for each combination of assigned effort, z, assigned capital, k and potential
deviation in effort, ẑ. For a particular combination z; k; ẑ, let:

C3(z; k; ẑ) = i(z; k)
�
P (qjẑ; k)
P (qjz; k)

[u(Te)� �(ẑ)]� [u(Te)� �(z)]
�
:

There will be n2
ZnK of these constraints, although several will not be binding (see

the discussion above). For a particular input assignment to be incentive com-
patible, the right hand side must be less than or equal to zero, so let B3 be a
column-vector of zeros of length n2

ZnK . These final constraints will be inequality
constraints, all others will be equality.

LetC(a; �) be theM�N matrix of constraints on the linear program when wealth
is a and the interest rate is �. where M = 1 + 1 + nQnZnK + nZnKnZ . Thus:

C(a; �) =

0
BBBBBBBBBBBB@

CZP

C1
C2(q1; z1; k1)
...
C2(qnQ ; znZ ; knK )
C3(z1; k1; z1)
...
C3(znZ ; knK ; znZ )

1
CCCCCCCCCCCCA
:

57



In the same way, let B be the vector of right-hand-size values:

B =

0
BB@

BZP

B1
B2
B3

1
CCA :

Optimal Contracts

A contract is an N � 1 vector of weights on events. It will be chosen to maximize
the objective function, subject to the constraints outlined above. Here, let y(a; �)
denote the optimal contract for an agent of wealth a at the interest rate �. It is
formed from the linear program:

max
y(a;�)

COBJy(a; �); subject to:(YP)

C(a; �)y(a; �) 5 B:

Where the first 2 + nQnZnK constraints are equality and the remaining n2
ZnK

are inequality. Most linear program solvers allow one to specify individual con-
straints as equality or inequality with ease.

Solving for all wealth levels a in A at a given interest rate � gives the demand
for capital by each wealth type. Combined with a distribution of wealth  (an
nA-vector), this implies an aggregate demand for capital:

Kd(�; ) =
X
a

 a[Key(a; �)]:

As above,  a is the population mass of wealth a.

Equilibrium

Given a distribution of wealth.  , equilibrium is a price, �?, and a set of contracts
for each wealth type, y(a; �?), at which aggregate demand and supply of capital
are equal and banks are solving their optimization problem, (YP):

Kd(�?; ) =  0A; and:
y(a; �?) solves YP.
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It is possible to calculate an upper bound on �?, at which no agent, no matter
how wealthy, would demand any capital at all. The lower bound may be taken as
zero. Thus finding an equilibrium becomes a matter of searching over candidate
values of � until the capital market clears. At each candidate value, of course, the
entire problem (YP) must be solved before the demand for capital may be found.
In practice I used combinations of both a grid search (over many predetermined
values of �) and a bisection approach.

There is one final fillip to this problem. A bisection algorithm, for example, may
converge to a neighborhood of � in which, at a candidate value �0, demand is too
high and at a candidate value �1 demand is too low. The distance between �0 and
�1 can shrink to the level of machine precision without finding a value of � which
clears the market. This happens when there is some critical value of � at which
a large proportion of agents in the economy suddenly switch from demanding
capital to not demanding capital. In that case, I set �? to the midpoint of �0 and
�1 and find a value, �, such that the convex combination of contracts clears the
market. That is, I define:

y(a; �?) = �y(a; �0) + (1� �)y(a; �1);

where � is such that:

�Kd(�0; ) + (1� �)Kd(�1; ) =  0A:

This is the standard equilibrium lottery, and is not to be confused with either grid
lotteries or input lotteries.

Dynamics

Given an equilibrium price �? and set of contracts y(a; �?), and a starting distri-
bution of wealth,  t, it is a simple matter to calculate the distribution of wealth
in the next period,  t+1. The assumption that A = sT will be particularly useful
here. An agent given a consumption transfer of �j inTwill bequeath s�j , which is
just (by this assumption) aj , the j-th element ofA. Thus all agents in period t + 1
born with wealth aj must have had parents who were allocated a consumption
transfer of �j . Finding the mass of agents at aj in period t+ 1 is thus a simple mat-
ter of adding up all of the agents allocated consumption transfers of �j in period
t.
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The mass of agents in period t + 1 with wealth aj inA will be given by:

 
aj
t+1 =

X
a

 at [i(� = �j)yt(a; �?t )]:

Contracts y and price �? must now be indexed by time, so that yt(a; �?t ) is the
optimal contract in period t for agents of wealth a, at the market clearing interest
rate in period t, �?t . Repeating this analysis for all possible wealth levels a in A
gives the complete distribution of wealth in period t,  t+1.

Computations Without Input Lotteries

The procedure without input lotteries is similar to that outlined above, so I will
only briefly cover the differences between the two. When input lotteries cannot be
used, optimal contracts between banks and agents are found as the solution to a
two-stage algorithm. In the first stage, the bank takes as given the choice of inputs
(z; k) and finds the best, feasible, incentive-compatible contracts yNL(a; �; z; k). If
such a contract does not exist (for example, the high effort level, low capital is
assigned to an agent with zero wealth) I set the associated expected utility level
to a large negative number. I then choose the value of (z; k) associated with the
largest expected utility. The optimal contract is thus a pair of objects: an input
choice (z; k)? and an ex post contract over T and Q, yNL(a; �; (z; k)?). Everything
else then proceeds as described earlier.
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